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Abstract: 

The aim of this research work is to investigate the impact of oscillating 

MHD blood flow in stenotic arteries. Assuming a Newtonian fluid, the 

analytical and numerical findings for oscillatory MHD blood flow are 

produced. Also, it was assumed that, in comparison to the radius of an open-

ended tube, the maximum height of surface roughness had a cosine form and 

was inconsequential. This study focuses into the fluid mechanics of blood 

flow in stenosed arteries using a mathematical model. The numerical 

solutions were presented for the effect of the magnetic field on the 

instantaneous flow rate, which decreases as the Hartman number increases. 

Keywords: Newtonian fluid, Oscillatory MHD blood flow, Cosine form, 

Stenosed arteries, Hartman number. 

Introduction 

In the field of cardiovascular health, it is of utmost significance to comprehend the intricate 

dynamics of blood flow within arteries, especially those affected by mild stenosis. This 

understanding is essential for accurate diagnosis and effective treatment of a wide array of 

cardiovascular ailments. The presence of stenosis, a narrowing of the arterial lumen, 

significantly alters blood flow patterns, potentially leading to adverse health outcomes such as 

thrombosis or tissue ischemia. Furthermore, incorporating the oscillatory 

Magnetohydrodynamic (MHD) effect into the mathematical modeling of blood flow adds 

another layer of complexity, as it accounts for the interaction between the flowing blood and 

an external magnetic field, a phenomenon particularly relevant in biomedical engineering 

applications. Therefore, in this study, we embark on a journey to explore the intricacies of 

blood flow within mildly stenosed arteries while considering the influence of the oscillatory 

MHD effect, aiming to unravel insights crucial for both clinical understanding and 

technological advancements in cardiovascular medicine. 

Several investigations have been conducted on blood flow in stenosed arteries, but few of them 

have looked at oscillatory MHD flow and have never used a mathematical model. An attempt 

is made to formulate an analysis for such a problem in the present study. Jain et al. (2010) 

investigated blood flow in a stenosed artery under the MHD effect within the porous medium 

using mathematical modeling. Analytical expressions have been obtained for share stress at the 

wall, pressure gradient, axial velocity, volumetric flow rate, and resistance to blood flow. They 

found that the flow patterns are considerably controlled by the magnetic field. Additionally, 

they discovered that a variety of factors, mainly the porosity constant and magnetic number, 
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had an impact on the blood flow within the stenosed artery. Blood flow inside a multistenosed 

artery under the influence of an externally applied magnetic field was investigated by Bali and 

Awasthi (2012). They considered an artery to be a round tube. By simulating blood as a Casson 

fluid, the impact of the non-Newtonian character of blood in small blood vessels has been 

considered. The study presents a graphic representation of the effects of many parameters on 

the velocity field, including the height of stenosis, shear stress on the wall at the stenotic surface 

and volumetric flow rate in the stenotic region. Using heat transfer and a bifurcated artery with 

minor stenosis in the parent lumen, Srinivasacharya and Rao (2015) investigated the impact of 

MHD on the couple stress fluid flow and provided numerical solutions for steady MHD blood 

flow. They assumed that blood was the couple stress fluid. The irregular boundary is 

transformed into a clearly defined boundary by coordinate transformation, which is based on 

the non-dimensionalization of the governing equations.  

The finite difference method is used to numerically solve the resulting system of equations. A 

graphical representation is provided of the change in shear stress, flow rate, and impedance in 

the immediate region of the flow divider, along with the related physical data. The effect of 

varying viscosity on MHD-inclined arterial blood flow with a chemical reaction was studied 

by Tripathi and Sharma (2018). It is thought that the blood’s variable viscosity varies with the 

hematocrit ratio. They used an analytical scheme and the homotopy perturbation method to 

solve the governing non-linear differential equations and find a solution for the blood flow’s 

velocity, temperature, and concentration profiles. They found that in an incline artery, shear 

stress on the wall at the stenosis throat increases with applied magnetic field values, while it 

decreases with increasing chemical reaction and porosity parameter values. The influence of 

viscous dissipation and chemical reactions on MHD oscillatory blood flow in a tapered 

asymmetric channel was studied by Sasikumar and Senthamarai (2022). They treated blood as 

an optically thick, viscoelastic fluid passing through a porous material and magnetic force that 

is thought to travel normally throughout the neurological system. An analysis is done on the 

impact of chemical reactions and viscous dissipation on blood flow. 

Mathematical Formulation:  

In this current analysis, we view the artery as a circular, rigid, and cylindrical tube. Using the 

coordinate system (r, z, t), where the z-axis aligns with the artery’s axis and the r-axis 

corresponds to its radius, we examine a laminar flow of blood, presumed to adhere to 

Newtonian characteristics, within an artery affected by mild stenosis. Throughout this study, 

the blood has maintained constant density and viscosity. The cylindrical shape of stenosis 

within the arterial segment is given by: 

𝑅(𝑧)

𝑅0
=

𝜖

2𝑅0
(1 + cos

𝜋𝑧

𝑑
)      (1) 

where the radius of the stenosed arterial region is denoted by  𝑅(𝑧), the radius of the normal 

artery is represented by 𝑅0, the semi-length of the stenosis is denoted by d and the maximum 

height of the stenosis is represented by 𝜖, such that 
𝜖

𝑅0
 << 𝜖 (Figure 1). 
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Figure 1: Cylindrical Flow Geometry of Stenosed Artery 

This mathematical model, in which it is also introduced as a magnetic field, can be analyzed 

using the following governing equation:  

∂u

∂t
= −

1

ρ

∂p

∂z
+

v

R0
2 {

∂2u

∂r2 +
1

r

∂u

∂r
} +

v

R0
2 βR0

2 σ

μ
u  

∂u

∂t
= −

1

ρ

∂p

∂z
+ λ {

∂2u

∂r2 +
1

r

∂u

∂r
} + λM2u      (2) 

Where p is the fluid pressure, v is the kinamatic viscosity, ρ is the fluid density, μ is the 

viscosity of the fluid, and u is the fluid velocity in the axial direction, 

λ =
v

R0
2, β2 =

ρR0
2ω

μ
 and M2 = βR0

2 σ

μ
. 

While the following are the boundary conditions:  

u = 0            on r =
R

R0

∂u

∂r
= 0             on r = 0

}       (3) 

In order to solve the problem, let’s now consider the following expression: 

u(r, t) = u̅(r)eiωt ,                     −
∂p

∂z
= Peiωt     (4) 

d2u̅

dr2
+

1

r

du̅

dr
− i (

ρR0
2ω

μ
+ iβR0

2 σ

μ
) u̅ = −

R0
2

μ
P     (5) 

We can now write equation (5) as follows:  

d2u̅

dr2 +
1

r

du̅

dr
− i(β2 + iM2)u̅ = −

R0
2

μ
P  

d2u̅

dr2 +
1

r

du̅

dr
− iα2u̅ = −

R0
2

μ
P       (6) 

Where α = β2 + iM2 

Hence the expression (4), and its corresponding boundary conditions are as follows:  
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u̅ = 0                at r =
R

R0

du̅

dr
= 0                  at r = 0

}       (7) 

According to the boundary conditions (2), the solution to equation (2.6) is: 

u̅(r) =
PR0

2

iμα2 [
J0(

αr

R0
i
3
2)

J0(
βR

R0
i
3
2)

]        (8) 

In this case, J0 represents the complex argument Bessel function of order zero.  

The axial velocity can thus be expressed as follows:  

u(r, t) =
PR0

2

iμα2
[

J0(
αr

R0
i
3
2)

J0(
βR

R0
i
3
2)

] eiωt       (9) 

Using the terminology provided by McLachlan (1934) 

J0 (zi
3

2) = M0(z)eiθ0(z)  

This might alternatively be written as:  

u(r, t) =
PR0

2M0

μα2
[sin(ωt + ϵ0) − i cos(ωt + ϵ0)]    (10) 

where ϵ0 = tan−1 [
h0 sin ϕ

1−h0 cos ϕ
], 

ϕ = θ0 (
αR

R0
) − θ0 (

αr

R0
), 

M0 = [1 + h0
2 − 2h0 cos ϕ]

1

2  

and h0 =
M0(

αr

R0
)

M0(
αR

R0
)
  

Now, if P cos ωt represents the real component of the simple harmonic pressure gradient, the 

axial velocity formulation is:  

u(r, t) =
PR0

2M0

μα2
sin(ωt + ϵ0)       (11) 

along with the volumetric flow rate:  

Q =
πR0

4P

iμα2
(

R

R0
) [

R

R0
−

2J1(
αR

R0
i
3
2)

i
3
2J0(

αR

R0
i
3
2)

] eiωt       (12) 

For pressure gradient P cos ωt, the flow rate is: 

Q =
nPR0

4M1

μα2 (
R

R0
) sin(ωt + ϵ1)      (13) 
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Where ϵ1 = tan−1 [
h1 sin θ

(
R

R0
−h1 cos ψ)

] , 

M1 = [(
R

R0
)

2

+ h1
2 − 2 (

R

R0
) h1 cos ψ]

1

2

 , 

h1 =
2M1(

αR

R0
)

αM1(
αR

R0
)
 , 

ψ =
3π

4
− θ1 (

αR

R0
) + θ0 (

αR

R0
)  

The shear stress at the wall: 

τR = μ (
∂u

∂r
)

r=R
  

Results and Discussion: 

In order to solve the problem numerically, let us assume that 
2d

l
= 1 and  

R

R0
= 1 −

ϵ

R0
 . 

Considering that the frequency parameter α is crucial to the flow pattern, it will now use it to 

describe the shear stress, and flow rate of the walls.  

 

 

Figure 2: Variation of shear stress at the wall with frequency parameter α for various 

stenosis height 

Figure 2 indicates how the shear stress at the wall varies with frequency for various stenosis 

heights. The study has found that when the stenosis height (
ϵ

R0
 ) increases for fixed values of 

the frequency parameter α, the shear stress at the wall |τ| also increases. Put another way, shear 

stress increases as the stenosis height does.  
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Figure 3: Variation of instantaneous rate of flow with frequency for various stenosis height 

The instantaneous flow rate varies with frequency for various stenosis heights, as displayed in 

Figure 3. The flow rate was similarly found to decrease with increasing stenosis height (
ϵ

R0
 ) 

for a specific value of the frequency parameter |α|.  

In the interval 0 ≤  α <  1, the deviation between any two successive curves is roughly 

constant; outside of this range, it dramatically falls for any values of |α| that lie on the sharply 

falling portions of the curve. 

 

 

Figure 4: Variation of instantaneous flow rate with frequency both with and without a 

Hartmann number 
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The instantaneous flow rate variation is displayed in Figure 4 both in the presence and absence 

of the Hartmann number, or magnetic field. When a magnetic field is present, the increase in 

Hartmann numbers reduces the variation in instantaneous flow rate, and vice versa. In an 

instance of no magnetic field, the outcome is the same as that described by Haldar (1987) in 

the oscillatory flow of blood in a stenosed artery.  

Conclusions: 

The analytical and numerical results for oscillatory MHD blood flow, which is believed to be 

a Newtonian fluid, are obtained in order to comprehend the irregular flow conditions of blood 

in locally constricted blood vessels. It is assumed that the surface roughness in this instance 

has a cosine form and that its maximum height is extremely slight in relation to the radius of 

the unconstrained tube. For various values of stenosis height, numerical solutions are given for 

the instantaneous flow rate, shear stress at the wall, and instantaneous flow rate with frequency, 

both in the absence and in the presence of Hartmann numbers.  

This study suggests the complicated interactions among oscillatory MHD impact, artery 

stenosis, and blood flow dynamics, offering important new understandings of the intricate 

behavior of blood flow in mildly stenosed arteries. These results open up new avenues for 

investigating and improving mathematical models to improve our comprehension of 

cardiovascular disorders and guide future therapeutic approaches. 
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